Package: metaggR 0.3.0
metaggR: Calculate the Knowledge-Weighted Estimate
According to a phenomenon known as "the wisdom of the crowds," combining point estimates from multiple judges often provides a more accurate aggregate estimate than using a point estimate from a single judge. However, if the judges use shared information in their estimates, the simple average will over-emphasize this common component at the expense of the judges’ private information. Asa Palley & Ville Satopää (2021) "Boosting the Wisdom of Crowds Within a Single Judgment Problem: Selective Averaging Based on Peer Predictions" <https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3504286> proposes a procedure for calculating a weighted average of the judges’ individual estimates such that resulting aggregate estimate appropriately combines the judges' collective information within a single estimation problem. The authors use both simulation and data from six experimental studies to illustrate that the weighting procedure outperforms existing averaging-like methods, such as the equally weighted average, trimmed average, and median. This aggregate estimate -- know as "the knowledge-weighted estimate" -- inputs a) judges' estimates of a continuous outcome (E) and b) predictions of others' average estimate of this outcome (P). In this R-package, the function knowledge_weighted_estimate(E,P) implements the knowledge-weighted estimate. Its use is illustrated with a simple stylized example and on real-world experimental data.
Authors:
metaggR_0.3.0.tar.gz
metaggR_0.3.0.zip(r-4.5)metaggR_0.3.0.zip(r-4.4)metaggR_0.3.0.zip(r-4.3)
metaggR_0.3.0.tgz(r-4.4-any)metaggR_0.3.0.tgz(r-4.3-any)
metaggR_0.3.0.tar.gz(r-4.5-noble)metaggR_0.3.0.tar.gz(r-4.4-noble)
metaggR_0.3.0.tgz(r-4.4-emscripten)metaggR_0.3.0.tgz(r-4.3-emscripten)
metaggR.pdf |metaggR.html✨
metaggR/json (API)
NEWS
# Install 'metaggR' in R: |
install.packages('metaggR', repos = c('https://satopaa.r-universe.dev', 'https://cloud.r-project.org')) |
- E_CALORIES_FINAL - Data: Calorie Counts
- E_CALORIES_INITIAL - Data: Calorie Counts
- E_COINS_NESTED - Data: Coin Flips
- E_COINS_NESTED_SYMMETRIC - Data: Coin Flips
- E_COINS_SYMMETRIC - Data: Coin Flips
- E_GK_1 - Data: General Knowledge Statements
- E_GK_2 - Data: General Knowledge Statements
- E_GK_3 - Data: General Knowledge Statements
- E_GK_4 - Data: General Knowledge Statements
- E_GK_5 - Data: General Knowledge Statements
- E_GROCERIES - Data: Grocery Prices
- E_NCAA_R16 - Data: NCAA Basketball
- E_NCAA_R64 - Data: NCAA Basketball
- ID_CALORIES - Data: Calorie Counts
- ID_COINS_NESTED - Data: Coin Flips
- ID_COINS_NESTED_SYMMETRIC - Data: Coin Flips
- ID_COINS_SYMMETRIC - Data: Coin Flips
- ID_GK_1 - Data: General Knowledge Statements
- ID_GK_2 - Data: General Knowledge Statements
- ID_GK_3 - Data: General Knowledge Statements
- ID_GK_4 - Data: General Knowledge Statements
- ID_GK_5 - Data: General Knowledge Statements
- ID_GROCERIES - Data: Grocery Prices
- ID_NCAA_R16 - Data: NCAA Basketball
- ID_NCAA_R64 - Data: NCAA Basketball
- P_CALORIES - Data: Calorie Counts
- P_COINS_NESTED - Data: Coin Flips
- P_COINS_NESTED_SYMMETRIC - Data: Coin Flips
- P_COINS_SYMMETRIC - Data: Coin Flips
- P_GK_1 - Data: General Knowledge Statements
- P_GK_2 - Data: General Knowledge Statements
- P_GK_3 - Data: General Knowledge Statements
- P_GK_4 - Data: General Knowledge Statements
- P_GK_5 - Data: General Knowledge Statements
- P_GROCERIES - Data: Grocery Prices
- P_NCAA_R16 - Data: NCAA Basketball
- P_NCAA_R64 - Data: NCAA Basketball
- THETA_CALORIES - Data: Calorie Counts
- THETA_COINS_NESTED - Data: Coin Flips
- THETA_COINS_NESTED_SYMMETRIC - Data: Coin Flips
- THETA_COINS_SYMMETRIC - Data: Coin Flips
- THETA_GK_1 - Data: General Knowledge Statements
- THETA_GK_2 - Data: General Knowledge Statements
- THETA_GK_3 - Data: General Knowledge Statements
- THETA_GK_4 - Data: General Knowledge Statements
- THETA_GK_5 - Data: General Knowledge Statements
- THETA_GROCERIES - Data: Grocery Prices
- THETA_NCAA_R16 - Data: NCAA Basketball
- THETA_NCAA_R64 - Data: NCAA Basketball
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:6aec9ebb60. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 08 2024 |
R-4.5-win | OK | Nov 08 2024 |
R-4.5-linux | OK | Nov 08 2024 |
R-4.4-win | OK | Nov 08 2024 |
R-4.4-mac | OK | Nov 08 2024 |
R-4.3-win | OK | Nov 08 2024 |
R-4.3-mac | OK | Nov 08 2024 |
Exports:get_influence_scoresknowledge_gapknowledge_weighted_estimateknowledge_weights
Dependencies:MASS
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Data: Calorie Counts | Calorie_Counts E_CALORIES_FINAL E_CALORIES_INITIAL ID_CALORIES P_CALORIES THETA_CALORIES |
Data: Coin Flips | Coin_Flips E_COINS_NESTED E_COINS_NESTED_SYMMETRIC E_COINS_SYMMETRIC ID_COINS_NESTED ID_COINS_NESTED_SYMMETRIC ID_COINS_SYMMETRIC P_COINS_NESTED P_COINS_NESTED_SYMMETRIC P_COINS_SYMMETRIC THETA_COINS_NESTED THETA_COINS_NESTED_SYMMETRIC THETA_COINS_SYMMETRIC |
Data: General Knowledge Statements | E_GK_1 E_GK_2 E_GK_3 E_GK_4 E_GK_5 General_Knowledge_Statements ID_GK_1 ID_GK_2 ID_GK_3 ID_GK_4 ID_GK_5 P_GK_1 P_GK_2 P_GK_3 P_GK_4 P_GK_5 THETA_GK_1 THETA_GK_2 THETA_GK_3 THETA_GK_4 THETA_GK_5 |
Calculate the Influence Scores | get_influence_scores |
Data: Grocery Prices | E_GROCERIES Grocery_Prices ID_GROCERIES P_GROCERIES THETA_GROCERIES |
Calculate the Knowledge Gap | knowledge_gap |
Knowledge-Weighted Estimate | knowledge_weighted_estimate |
Calculate the Weights that Minimize the Knowledge Gap | knowledge_weights |
Data: NCAA Basketball | E_NCAA_R16 E_NCAA_R64 ID_NCAA_R16 ID_NCAA_R64 NCAA_Basketball P_NCAA_R16 P_NCAA_R64 THETA_NCAA_R16 THETA_NCAA_R64 |